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ABSTRACT 

Humans depend on many different plants as food sources, and since ancient times, cereals have been the most 

important. Cereals are a nutritionally important source of dietary proteins, iron, vitamin B complex, vitamin E, 

carbohydrates, niacin, riboflavin, thiamine, fiber, and traces of minerals essential for both humans and animals. 

Arbuscular mycorrhizal (AM) fungi are soil fungi that form a mutualistic symbiosis with the roots of plants. The 

review summarizes recent research on AM fungal symbiosis in crop plants. It also provides a comprehensive 

knowledge of AM fungi, their influence on crop plants at various stages of growth, their role in improving yield and 

productivity, increased tolerance to various environmental stresses, and their effect on agricultural management 

practices.   

Keywords: AM fungi, Growth stages, Yield, Productivity, Agricultural management 

INTRODUCTION  

Crop plants are grown by humans for food and other 

resources. Based on their usage, crops are divided 

into four major divisions, i.e., food (wheat, maize, 

rice, millets, and pulses), cash (sugarcane, tobacco, 

cotton, jute, and oilseeds), plantation (coffee, 

coconut, tea, and rubber) and horticulture (fruits and 

vegetables).   

Chemical fertilizers have become a significant input 

in crop production worldwide (Tilman et al., 2002). 

However, further increases in N and P application are 

unlikely to be as effective at increasing yields (Wang 

et al., 2011) as crops uptake only 30-50% of applied 

N fertilizer and 10-45% of P fertilizer (Adesemoye 

and Kloepper, 2009; Garnett et al., 2009). In 

addition, the abundant use of chemical fertilizers in 

agriculture has had some deleterious environmental 

consequences and is a global concern (Tilman et al., 

2002). There is an urgent need to improve food 

security and protect and promote soil biodiversity and 

functionality by implementing sustainable 

management practices.   

The soil is a life-supporting system rich in 

microorganisms with many interactions that 

determine plant growth. Microorganisms in the soil 

provide nutrients to plants, protect them from biotic 

and abiotic stresses, and boost their growth and yield 

(Bagyaraj and Jamaluddin, 2019; Enebe and 

Babalola, 2018). The narrow zone of soil around 

plant roots is the rhizosphere, which is very rich in 

microbial activity due to root exudates with nutrients, 

sloughed-off root cells, and mucilage released by the 

plant root. The rhizosphere harbours 10-50 times 

more bacteria and 5-10 times more fungi than soil 

away from the roots (Richards, 1976). Interaction 

between microorganisms in the rhizosphere 

profoundly affects the growth, nutrition, and health of 

plants in agro- and natural ecosystems (Philippot et 

al., 2013).   

Arbuscular mycorrhizal (AM) fungi are a promising 

option for sustainable agriculture and food security 

(Thirkell et al., 2017). These fungi are integral to soil 

and plant roots, forming a symbiosis with many food 

crops (Smith and Smith, 2011). The interactive effect 

of AM fungi in the soil and their potential to improve 

the growth of food crops is discussed in this review. 

AM FUNGI IN AGRICULTURE 

AM fungal symbiosis is the most common type of 

association involved in agricultural systems. They are 

associated with improved growth of many plant 

species due to increased nutrient uptake, production 

of growth-promoting substances, induced tolerance to 

drought, salinity and transplant shock, and synergistic 

interaction with other beneficial soil microorganisms 

such as N-fixers and P-solubilizers (Sreenivasa and 

Bagyaraj, 1989). Symbiotic association of plant roots 

with AM fungi can enhance growth because of the 

increased acquisition of P and nutrients with low 

mobility in soil. Effective nutrient acquisition by AM 

fungi is generally attributed to the extensive hyphal 

growth beyond the nutrient depletion zone 

surrounding the root (Tisdale et al., 1995). Thus, the 

AM fungi enable their host plants to gather mineral 

nutrients from a much larger soil volume than the 

roots could reach (Jansa et al., 2009). 

Nearly 90% of plant species, including flowering 

plants, bryophytes, and ferns, can develop 
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interdependent connections with AM fungi (Ahanger 

et al., 2014). They form hyphae, arbuscules, vesicles 

in the roots, and spores and hyphae in the 

rhizosphere. Formation of the hyphal network by the 

AM fungi with plant roots significantly enhances the 

access of roots to a large soil surface area, causing 

improvement in plant growth (Bowles et al., 2016). 

AM fungi improve plant nutrition by increasing the 

availability and translocation of various nutrients 

(Rouphael et al., 2015). They are also very effective 

in helping plants take up nutrients from nutrient-

deficient soils (Kayama and Yamanaka, 2014). Apart 

from the macro-nutrients, the AM fungal association 

is known to increase the availability of micro-

nutrients like zinc and copper (Smith and Read, 

1997). Besides, they improve the surface-absorbing 

capability of host roots (Bisleski, 1973). 

AM FUNGAL RESPONSE UNDER GLASS 

HOUSE/NURSERY AND FIELD CONDITIONS 

Due to the functional attributes of AM fungi, they 

may be used as bioinoculants to improve crop 

production. However, several factors influence the 

success rate of AM fungal inoculation. These include 

AM fungal species compatibility with the host, 

interaction with other soil organisms, environment in 

the target niche, etc. They mutually interact with 

other beneficial soil microorganisms, enhancing plant 

growth (Hashem et al., 2018). The best way to utilize 

AM fungi for crop production would be to 

concentrate on crops commonly grown on nursery 

beds, root trainers, or polybags, where they could 

easily be inoculated with desired AM species and 

then transplanted to the field (Nikhil et al., 2019). 

Wheat plants inoculated with AM fungi generally 

have higher grain yield, improved nutrient uptake 

(especially P), and increased nutrient content in the 

plant itself when compared to non-inoculated plants. 

Studies performed under greenhouse and field 

conditions support these findings (Al-Karaki et al., 

2004; Saed-Moucheshi et al., 2012). AM fungal 

contribution of more than 50% of the P uptake was 

reported in spring wheat (Triticum aestivum) 

inoculated with Rhizophagus irregularis (Li et al., 

2006). Inoculation with Funneliformis mosseae in 

durum wheat (Triticum durum, cv. Petra) showed a 

plant dependency on mycorrhizae for P uptake (Al-

Karaki, 2002). Higher differences in P plant 

acquisition in Triticum aestivum, cv. Otto inoculated 

with Claroideoglomus etunicatum reflects the 

beneficial mineralizing phosphatase effect of the 

AM-fungus-colonized roots. In field conditions, a 

synergistic effect of plant-growth-promoting 

rhizobacteria and AM fungus on P uptake in wheat 

was reported with the co-inoculation of Azotobacter 

chroococcum with Bacillus sp. and Rhizophagus 

fasciculatus (Khan and Zaidi, 2007).  

Maize is highly mycorrhizal, and there is evidence 

from different studies that AM fungi play an essential 

role in increasing maize productivity (Gomes et al., 

2015; Cozzolino et al., 2013; Symanczik et al., 

2018). Subramanian et al. (1995) conducted 

greenhouse experiments with a drought-tolerant 

maize genotype obtained through recurrent selection 

and compared it to the original drought-susceptible 

cultivar. Upon AM inoculation, both variants 

responded to drought treatment with higher leaf water 

potential and stomatal conductance values and 

recovered quicker from water stress than their non-

mycorrhizal counterparts. Arihara and Karasawa 

(2000) reported that the preceding crop affected the 

growth of succeeding maize mainly by influencing 

AM colonization and development. Concerning crop 

rotation, when maize was rotated with a mycorrhizal 

crop, it showed enhanced AM fungal colonization 

compared to non-mycorrhizal or fallow fields (Dias 

et al., 2018). AM fungal species with features similar 

to Rhizophagus irregularis were suitable as 

components for large-scale inoculum production 

programs as the inoculums showed good colonization 

potential (Cely Martha et al., 2016). Hence, AM 

fungi were introduced as a biofertilizer for farming 

technology, including maize monocropping (Dias et 

al., 2018).  

Rice plants are grown mainly in anoxic paddy fields, 

in which AM fungi are debated (Lumini et al., 2011; 

Wang et al., 2015). However, AM fungal species 

belonging to four genera, viz., Acaulospora, Glomus, 

Funneliform, and Entrophospora were recorded from 

the rhizosphere soil of rice cultivated in the wetlands 

(Xavier Martins and Rodrigues, 2018). In a 

laboratory experiment, the colonization of AM fungi 

decreased under flooding conditions (Vallino et al., 

2009). In contrast, rice seedlings were colonized well 

under drained upland conditions (Vallino et al., 2009; 

Xavier Martins and Rodrigues, 2020). In rice, 

associations with AM fungi result in changes in plant 

competitive ability (Roger et al., 2013), ecotype-

specificity (Diedhiou et al., 2016), functional 

diversity (Li et al., 2011), nutrient acquisition 

(Hoseinzade et al., 2016), and growth and gene 

expression (Colard et al., 2011). The AM fungus 

Rhizophagus irregularis is one of the world's most 

widespread AM fungal species (Cornell et al., 2022). 

Evidence also supports that R. irregularis can grow 

and colonize rice plants in flooded soil while 

maintaining functional capacities (Vallino et al., 

2014). In other studies, the application of AM fungi 

at the nursery stage increased the yield by 14-21% in 

the wetland rice cultivar Nipponbare (Solaiman and 
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Hirata, 1997b). In wetland rice var. Prakash, grain 

yield increased by 35-62% upon inoculation with 

Acaulospora sp., Glomus fasciculatum, or G. 

mosseae (Secilia and Bagyaraj, 1994).  

Millet develops an extensive root system with high 

root length densities. The relative impact of AM 

fungi on millet nutrient uptake is less than for 

leguminous crops or other semi-arid cereals 

(Bagayoko et al., 2000). However, millet and corn 

seem able to induce the multiplication of AM spores 

in the soil (Muok et al., 2009). AM fungi provide 

drought tolerance to finger millet seedlings through a 

stronger root system, greater photosynthetic 

efficiency, a more efficient antioxidant system, and 

improved osmoregulation (Tyagi et al., 2021). 

The importance of AM fungal associations in crops, 

especially legumes, and their significance in 

nodulating N-fixing plants have been well 

documented (Barea and Azcon-Aguilar, 1983). Khalil 

et al. (1994) studied mycorrhizal dependence and 

nutrient uptake by corn and soybean cultivars. They 

showed that soybeans had a higher mycorrhizal 

dependence than corn because the legume roots are 

less extensive due to nodule formation than non-

legumes. Differences in the relative mycorrhizal 

dependence between crop species or even cultivars 

are also related to other plant factors, such as root 

structure, plant growth rates (Sieverding, 1986), and 

microorganisms in the rhizosphere, which could 

affect the demand for P (Xie et al., 1995). Practical 

application of Glomus intraradices, on the production 

of different bean genotypes has indicated that AM 

fungi significantly increased plant growth and 

production (Hacisalihoglu et al., 2005). 

 

Table 1:  Role of AM fungi in nutrient uptake at different stages of plant growth. 

 

Plant AM Fungi Spore 
Plant 

Stage 

Nutrient 

Uptake 
Environmental Condition Reference 

Wheat Glomus sp. Tillering N Ozone stress  Cui et al.,2013  

Wheat 
Rhizophagus 

tenuis 

Vegetative, 

fruiting  
P Semi-arid field Smith et al., 2015 

Wheat 

Rhizophagus 

fasciculatus, 

Funneliformis 

mosseae 

Fruiting  Zn Drought stress  Pellegrino et al., 2015 

Wheat 

 

Rhizophagus  

intraradices  
Tillering  Zn Under P application Ma et al., 2019 

Maize 

 

F. mosseae, 

Claroideoglomus  

etunicatum 

Tillering  N Under Zn-deficient soil  
Watts-Williams et al., 

2017 

Maize F. mosseae  Vegetative  N Field  Meng et al., 2015 

Maize 

 

Rhizophagus  

irregularis  

Fruiting  

 
P 

Compartmented pots with 

radioactive P tracer  
Battini et al., 2017 

Maize Glomus clarum  Fruiting  P P deficient  Amerian et al., 2001 

Rice R. intraradices 
Tillering, 

Maturity 
N, P, C Greenhouse  Zhang et al., 2017 

Rice Glomus sp. 
Early 

tillering  
N, P Wetland  

Solaiman and Hirata, 

1997 

Rice 

Funneliformis 

geosporum, 

F. mosseae 

Fruiting  P Under As soil conditions  Chan et al., 2013 

Barley F. mosseae 

Seedling, 

Flowering, 

Fruiting  

Zn Under Cd conditions  Garg and  Kaur,  2013 

Barley R. intraradices  Fruiting  Zn Drought stress   Bhantana et al., 2021 

Sorghum G. clarum  Harvesting  N Greenhouse Nakmee et al., 2016 

Sorghum Glomus sp. Harvesting  P Greenhouse Nakmee et al., 2016 

https://www.sciencedirect.com/science/article/pii/S0944501310000388#bib0070
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AM FUNGAL RESPONSES IN STRESSED 

ENVIRONMENTS  

AM fungi respond differently to abiotic stresses such 

as drought, flooding, extreme temperatures, salinity, 

and heavy metals (Diagne et al., 2020). Drought is a 

major stress that can considerably reduce plant 

productivity (Posta and Duc, 2020). Water 

constraints provoke stomatal closure with a 

subsequent reduction of CO2 influx, resulting in 

decreased photosynthetic activity, carbon partitioning 

(Osakabe et al., 2014), and reduced plant productivity 

and yield. It has been demonstrated that AM fungi 

improve plant performance in drought stress 

(Balestrini and Lumini, 2018). Improvement of plant 

fitness by AM fungi is possibly due to the increased 

surface area for water absorption provided by AM 

fungal hyphae (Augé, 2001).  

Phytohormones play an important role in plant 

response to drought stress. Hormone homeostasis 

regulates plant tolerance against abiotic stresses. 

Abscisic acid (ABA) is the most fundamental stress 

hormonal signal, modulating transpiration rate, root 

hydraulic conductivity, and aquaporin expression. 

ABA responses regulate stomatal conductance and 

other physiological processes (Ouledali et al., 2019). 

ABA induces stomatal closure and reduces cell water 

loss. Inoculation with AM fungi influences the 

control of stomata functioning by regulating abscisic 

acid (Ouledali et al., 2019). A lower ABA 

concentration was found in the roots and leaves of 

mycorrhizal plants versus non-mycorrhizal plants 

under drought stress (Nakmee et al., 2016; Chitarra et 

al., 2016). It has also been demonstrated that 

Jasmonic acid (JA) interacts with abscisic acid to 

regulate plant responses to water stress conditions 

(De Ollas and Dodd, 2016). JA is known to mitigate 

plant water stress (Yosefi et al., 2018). 

Phytohormones, such as strigolactone and auxin, 

regulate plant water stress (Mostofa et al., 2018). It 

has been demonstrated that inoculation with AM 

fungi strengthens strigolactone and auxin responses 

to drought stress (Ruiz-Lozano et al., 2015). 

Several studies revealed that mycorrhiza could be 

used as a stress-reducing agent in soils contaminated 

by heavy metals helping plants to survive in such 

stressed conditions (Song et al., 2020; Conversa et 

al., 2019; Padmavathi et al., 2016). Heavy metal 

remediation by AM fungi can happen through hyphal 

"metal binding," reducing the bioavailability of 

elements such as Cu, Pb, Co, Cd, and Zn (Audet and 

Charest, 2007). The alleviation of heavy metal 

toxicity by AM fungi depends on the fungal partner, 

plant growth conditions, the type of heavy metal, and 

its concentration (Hildebrandt et al., 2007). 

AM fungi occur naturally in saline environments 

(Yamato et al., 2008). Their contribution to 

improving the growth of several plant species under 

saline conditions is well known (Evelin et al., 2009; 

Amanifar et al., 2019). Enhancement of water 

absorption capacity, nutrient uptake, accumulation of 

osmoregulators like proline and sugars (Yamato et 

al., 2008), ionic homeostasis (Munns and Tester, 

2008), and the reduction in Na
+
 and Cl

−
 uptake (Li et 

al., 2020) has been observed in plants inoculated with 

AM fungi. In addition, AM fungal colonization 

improves stomatal conductance and reduces oxidative 

damage in plants exposed to salinity (Estrada et al., 

2013; Pedranzani et al., 2015). 

Inoculation with AM fungi has been well-reported to 

stimulate wheat growth under drought-stress 

conditions. A metabolomic analysis by Bernardo et 

al. (2019) in a water deficit regime on Triticum 

durum and T. aestivum wheat cultivars supported the 

hypothesis that AM fungi enhance the plant response 

to water stress. Inoculation with Funneliformis 

mosseae significantly improved the plant biomass, 

resulted in a positive trend in Water Use Efficiency 

(WUE), and reduced oxidative damage. Inoculation 

of Triticum aestivum var. Buck Pronto with Glomus 

claroideum alleviated the deleterious effects of 

drought stress, revealing a significant increase in total 

dry weight, Relative Water Content (RWC), and leaf 

chlorophyll content (Beltrano and Ronco, 2008). 

Field inoculation with Funneliformis mosseae or 

Claroideoglomus etunicatum on Steardy (drought-

sensitive) and TAM-105 (drought-tolerant) winter 

wheat cultivars resulted in enhanced yield in both the 

cultivars (Al-Karaki et al., 2004). Triticum aestivum 

plants, exposed to water stress and grown in soil 

inoculated with a mixed starter culture of AM fungi 

(Rhizophagus intraradices, Funneliformis mosseae, 

and F. geosporum), recorded less damage to the 

structure and function of PSII and PSI systems and 

exhibited an increase in RWC for both leaf and soil, 

indicating the ability of AM fungal hyphae to 

penetrate deep into the soil and provide moisture to 

the plants (Al-Karaki and Al-Omoush, 2002). 

Maize plants inoculated with Rhizophagus irregularis 

had longer roots and higher P absorption under 

alkaline conditions because AM fungi facilitate N 

and P uptake (Merlos et al., 2016). R. intraradices 

enhanced P concentration in rice and increased grain 

yield and straw biomass by reducing the negative 

effect of heavy metals under arsenic (As) conditions 

(Li et al., 2011). This may be because the 'dilution 

effect' lowers the As concentrations in the grains due 

to the higher growth in AM-inoculated plants. 
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Compared to non-inoculated plants, sorghum plants 

inoculated with F. mosseae showed a higher Fe 

content in shoots under low-nutritional soil 

conditions due to C4 crops being considered more 

responsive toward AM colonization than C3 plants 

(Caris et al., 1998). Claroideoglomus etunicatum 

considerably enhanced P, N, sulfur (S), and 

molybdenum (Mo) concentrations in both roots and 

shoots of Sorghum (Shi et al., 2020). 

In barley (Hordeum vulgare), inoculation with F. 

mosseae decreased cadmium (Cd) and cobalt (Co) 

uptake under conditions of heavy metal (Cd, Co, and 

Pb) polluted soil, demonstrating that AM 

colonization has an alleviating effect on barley under 

heavy metal conditions (Beltrano and Ronco, 2008). 

Watts-Williams et al. (2020) reported that R. 

irregularis boosted Zn uptake in barley plants 

compared to non-inoculated plants since AM fungi 

are known to explore the soil volume beyond the 

nutrient depletion zone. 

Begum et al. (2019) opined that under salinity 

conditions, AM fungi improve the uptake of most 

essential nutrients and decrease the uptake of sodium 

(Na) and chloride (Cl), resulting in better growth. 

The increase in the uptake of nutrients like 

phosphorus (P), nitrogen (N), potassium (K), Copper 

(Cu), and zinc (Zn) helps to maintain ionic 

homeostasis (Evelin and Kapoor, 2014). Mycorrhizal 

colonization boosts the production of antioxidant 

molecules. It increases the activities of enzymes such 

as catalase, peroxidase, superoxide dismutase, and 

ascorbate peroxidase (Hashem et al., 2018), thus 

providing an improved oxidation scavenging system 

(Evelin and Kapoor, 2014). Besides, they help the 

plants maintain water status, increase stomatal 

conductance, and enhance photosynthetic pigments to 

combat the effects of salts and increase 

photosynthesis for growth and development (Chaves 

et al., 2009). Rhizophagus intraradices promoted P, 

Fe, and Zn uptake and inhabited the uptake of Na in 

barley plants (Mohammad et al., 2003). 

In buckwheat (Fagopyrum esculentum), the total N 

and P absorptions were positively affected by the 

mixed AM fungi under inorganic and organic P 

applications (Boglaienko et al., 2014). It has been 

stated that mixed AM fungi might have a more 

positive impact on plants. Bagayoko et al. (2000) 

reported higher levels of P, K, Ca, Mg, and Zn in 

roots compared to control in millet (Pennisetum 

glaucum) plants treated with mixed AM fungi. 

Similarly, the application of three AM fungi, viz., 

Funneliformis mosseae, Rhizophagus fasciculatum, 

and Gigaspora decipiens, enhanced plant growth and 

glomalin-related soil protein (GRSP) under barren 

soil conditions in millet (Pal and Pandey, 2017), 

suggesting that AM fungi contribute to heavy metal 

sequestration in polluted soils and sediments in semi-

arid environments. 

AGRICULTURAL MANAGEMENT PRACTICES 

INFLUENCING AM FUNGAL RESPONSE 

The persistence of AM fungi in the field depends on 

the formation and survival of fungal structures inside 

and outside the plant roots. AM fungal spores and 

colonized root pieces are considered the most 

relevant survival structures, even without a viable 

host plant. Under natural conditions, spore and 

hyphal densities are subject to seasonal variations 

(McGonigle and Murray, 1999). Moreover, AM 

fungal species and their colonization strategies 

determine which fungal structures (spores, colonized 

root pieces, or hyphal fragments) are relevant for 

survival and establishing a new symbiotic 

relationship after the absence of a host plant (Hart 

and Reader, 2002).  

In agroecosystems, the land use type, the farming 

system, the tillage system, and the fertilization 

strategy are major factors influencing AM fungal 

persistence and development. Local AM fungal 

communities are periodically challenged by host 

plant turnover, crop rotations, and soil management, 

especially in annual crops. Evidence shows that 

tillage systems, which turn the soil, can negatively 

affect AM fungi by destroying the extraradical 

hyphal network. By contrast, no-tillage systems can 

foster AM fungi and increase benefits for the host 

plant due to better plant P uptake and soil aggregate 

stability (Säle et al., 2015). 

Previous studies have shown that fertilizer input has 

varying effects on AM fungal growth by altering the 

soil micro-environment. Chen et al. (2014) reported 

that N application mainly changed the species 

composition of AM fungi, whereas P application 

affected the abundance of AM fungi. However, Xiao 

et al. (2019) revealed that adding N affected the AM 

fungal abundance. In contrast, adding P affected the 

diversity of AM fungi, and adding N and P had no 

significant effect on the community composition of 

AM fungi in the ecosystem.   

Qin et al. (2015) reported that high soil nutrient 

content such as N and P promotes AM fungal 

sporulation. They stated that the input of organic 

fertilizer is beneficial to the growth of soil flora and 

that the soil pH and K significantly affect the 

community composition of AM fungi. 
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Table 2:  Role of AM fungi in a stressed environment. 

 

Plant 
AM Fungi 

Spore 
Plant Stage 

Changes after AM 

colonization 

Stressed 

environment 
Reference 

Wheat R. irregularis  Vegetative  

Enhanced macro- and 

micro-nutrient 

concentration 

Low- or high-

temperature stress  
Zhu et al., 2017 

Wheat F. mosseae  Vegetative  

Increased  

concentrations of P, 

N, K, and Mg 

Saline soil 

condition  

Abdel-Fattah and  

Asrar, 2012  

Wheat  F. geosporum  
Seeding and 

vegetative  

Upregulation of water 

and nutrient uptake 

Salt, drought, and 

heavy metal 

conditions  

Ibrahim et al., 

2011 

Wheat  G. claroideum  Tillering  

Enhanced total dry 

weight and leaf 

chlorophyll 

concentration 

Drought stress 

condition  

Beltrano and 

Ronco, 2008 

Maize  F. mosseae  Pre-flowering 
Increased N and P 

concentration 

Under water deficit 

conditions  

Ghorchiani  et al., 

2018 

Maize  G. etunicatum  Tillering  
Increased plant 

Biomass 

Under P-deficient 

conditions 

Almagrabi and 

Abdelmoneim, 

2012 

Maize  C. intraradices Vegetative stage 

Increased water 

uptake and leaf 

water potential 

Under sandy loam 

soil 

Amerian et al., 

2001 

Maize  R. irregularis  

Seedling, 

tillering, 

and fruiting  

Increased Cu 

tolerance 

Under heavy metal 

condition 

Merlos et al., 

2016 

Rice  C. etunicatum  
Heading and 

flowering 

Improving 

nutrition status 

and plant growth 

Under salt stress 

conditions 
Porcel  et al., 2015 

Sorghum  R. irregularis  Fruiting 

Improved their 

transpiration 

efficiency and 

drought tolerance 

Under drought 

conditions  

Symanczik et al., 

2018 

Barley  F. mosseae  Flowering  

Increased 

resistance against 

heavy metal 

conditions 

Increased 

resistance against 

heavy metal 

conditions 

Mohammad  et 

al., 2015 

 

CONCLUSION 

Mycorrhizae and their use in crop plants have been 

experimented worldwide. Most of the research is 

focused on the benefits the host plants enjoy from the 

viewpoint of nutrient availability, growth, 

productivity, and increased tolerance against 

environmental stress. AM fungi are used as an 

inoculum in greenhouses but can also be used on a 

larger scale in fields. Therefore, future research 

should identify efficient AM fungi that can be used as 

biofertilizers to overcome soil fertility problems, 

improve plant health, and increase crop yield.  
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